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Nonlinear shallow-water oscillations in a parabolic 
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A new exact solution of the nonlinear shallow-water equations is presented. The 
solution corresponds to divergent and non-divergent free oscillations in an infinite 
straight channel of parabolic cross-section on the rotating Earth. It provides a 
description of the one-dimensional subclass of shallow-water flows in paraboloidal 
basins considered by Ball (1964), Thacker (198 l), Cushman-Roisin (1987) and others 
in which the velocity field varies linearly and the free-surface displacement varies 
quadratically with the spatial coordinates. In contrast to the previous exact solutions 
describing divergent oscillations in circular and elliptic paraboloidal basins, the 
oscillation frequency of the divergent oscillation in the parabolic channel is found to 
depend, in part, on the amplitudes of the relative vorticity and free-surface curvature. 
This result is consistent with Thacker's (1981) numerical finding that when the free 
surface in parabolic channel flow is curved, the oscillation frequency depends on the 
amplitude of the motion. Solutions for parcel trajectories are also presented. The exact 
solution provides a rare description of a class of nonlinear flows and is potentially 
valuable as a validation test for numerical shallow-water models in Eulerian and 
Lagrangian frameworks. 

1. Introduction 
Despite the fundamental role of shallow-water theory in atmospheric, oceanographic 

and engineering flow problems, few exact solutions have been obtained. The primary 
difficulty in obtaining analytic solutions stems from the presence of nonlinear terms 
associated with fluid inertia, terms that render conventional (i.e. linear) analysis 
techniques powerless in the general case. One of the classic solutions in shallow-water 
theory is the dam break solution of the shallow-water equations (Whitham 1974; 
Stoker 1958). Another well-known solution describes the propagation of shallow-water 
waves up a sloping beach (Carrier & Greenspan 1958). These and other exact solutions 
in shallow-water theory are of theoretical interest in their own right and are also 
potentially useful as test solutions for the validation of numerical models of tides, 
seiches and storm surges. 

Presented herein is an exact analytic solution for a class of finite-amplitude inviscid 
shallow-water oscillations in an infinite straight channel of parabolic cross-section. 
Provision is made for the Earth's rotation with a constant Coriolis parameter. The 
shoreline, a moving boundary, is determined as part of the solution. The solution is a 
member of a class of shallow-water flows characterized by a velocity field that varies 
linearly and a free-surface displacement that varies quadratically with the spatial 
coordinates. These restrictions reduce the shallow-water equations, without ap- 
proximation, to a finite set of nonlinear coupled ordinary differential equations. 
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Analytic solutions to these ordinary differential equations have been found in special 
circumstances by several investigators but the most general solution has yet to be 
obtained. 

Goldsbrough (1 93 1) showed that the spatial structure of linear free oscillations in a 
non-rotating elliptic basin having a paraboloidal depth variation could be described by 
low-order polynomials. Some three decades later, Ball (1963) recognized that low- 
order polynomials (linear for velocity, quadratic for free-surface displacement) could 
also describe nonlinear shallow-water oscillations in paraboloidal basins, with or 
without a rotating framework. Subsequent investigations by Miles & Ball (1963), Ball 
(1964, 1965), Thacker (1981), Cushman-Roisin (1984, 1987) and Cushman-Roisin, 
Heil & Nof (1985) extended the exact solutions of the nonlinear flows constrained by 
this spatial structure. Thacker described these flows as nonlinear normal mode 
oscillations of shallow water in paraboloidal basins. As such, they may be of relevance 
to free oscillations in lakes, channels and gulfs. Cushman-Roisin applied his elliptical 
vortex solution to oceanic warm-core rings. Numerical solutions of the forced (two- 
level) and unforced system were employed by Tsonis et al. (1994) in a study of 
nonlinear time series analyses. Solutions to the forced system exhibited chaotic 
properties. Although the unforced system did not exhibit chaotic properties, the 
solutions could be quite complicated for certain parameter choices. 

In the next section we formulate the problem of the one-dimensional subclass of 
these flows in which the basin is a channel and the fluid moves in both the along- 
channel and cross-channel directions but with no variation in the along-channel 
direction. The free-surface displacement is composed of divergent and non-divergent 
components. The pure non-divergent mode is examined in $3 .  Integrals of motion for 
the general case are derived in $4. In $ 5  we deduce the oscillatory behaviour of the 
divergent mode and present the exact solution. The frequency of the divergent 
oscillation is a function of two non-dimensional governing parameters involving the 
basin geometry, the Coriolis parameter, the relative vorticity and the curvature of the 
free-surface. This result is consistent with the numerical finding reported by Thacker 
(198 I)  that when the free surface is curved, the frequency of oscillations in the channel 
depends on the amplitude of the motion. In $6 we summarize the solution to the initial 
value problem. Analytic parcel trajectories are derived in $7. Specific examples are 
examined in $8. 

2. Formulation 
Consider inviscid shallow-water flow in a channel where the free surface and velocity 

field are independent of the along-channel coordinate. The equations of motion and 
mass conservation for these flows are 

au  au ah 
-+u--fv+g- = 0, 
at  ax ax 

av  au  
-+u-+fu = 0, 
at ax 

ah a 
-+-“u(D+h)] = 0, at  ax 

where x and y are the Cartesian coordinates in the cross- and along-channel directions, 
respectively, u and u are the Cartesian velocity components in the cross- and along- 
channel directions, respectively, f is the Coriolis parameter (assumed constant), and g 
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FIGURE 1. Definitional sketch for one-dimensional shallow-water flow in a straight channel of 
parabolic depth variation D(x)  = D,(1 - x 2 / L 2 ) .  The free-surface displacement h(x, t )  and the velocity 
field are independent of the along-channel ( y )  coordinate. 

is the acceleration due to gravity (or a reduced-gravity constant). The channel depth 
D(x)  is reckoned positive beneath z = 0 (i.e. z = -D(x) defines the channel 
topography), and the free-surface displacement h(x ,  t )  is reckoned positive above z = 0, 
so the total fluid depth is D(x)  + h(x,  t ) .  The values of x for which D(x) + h(x, t )  = 0 
mark the intersection of the free surface with the channel and define the location of the 
moving shoreline. A definitional sketch is provided in figure 1. 

Several useful integral constraints (invariants of motion) can be derived for the one- 
dimensional shallow-water system (1)-(3) assuming the lateral extent of the flow is 
finite. Denoting the western and eastern time-dependent shorelines by r - ( t )  and r+(t), 
respectively, we can write conservation equations for the integrated energy and mass 
(per unit y-length) in the channel as 

j: ~ ?/?t [(D + h )  (uz + v 2 ) / 2  +g(h2 - D 2 ) / 2 ]  dx = 0 and c?/c?t(D + h )  dx = 0.  
r -  

Interchanging the order of differentiation and integration in these constraints (a 
legitimate step since D + h vanishes at the shoreline), we find that 

(D + h)  dx = M and [(D + h )  (u2 + 2.')/2 +g(h2 - 07/21 dx = E, 

where M and E are independent of time. It can also be shown that the integrated 
absolute y-momentum 

/::(D + h )  (u  +fx) dx 

and integrated absolute vertical vorticity 

are independent of time. More generally, it can be shown that since the potential 
vorticity Q E ( a u / a x + f ) / ( D + h )  is conserved following fluid motion; that is 

must be independent of time, where F is an arbitrary function of Q. 
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We seek special solutions of (1)-(3) for which the x-coordinate dependences of the 
free-surface displacement, channel depth and velocity field are described by low-order 
polynomials (quadratic for h and D and linear for u and v). Adopting Thacker’s (1981) 
notation, we write the free-surface displacement and channel geometry in the form? 

h(x, t )  = ho(t)+h,(t)x++hh,,(t)x2, D(x) = D,(1 -xZ/L2), (4) 

(5 )  

with the velocity field varying as 

u(x, t) = uo(t) + u,(t) x, v(x, t )  = v,(t) + v,(t) x. 
If the centreline channel depth Do( = D(0)) is positive the topography is a channel of 

parabolic cross-section; if Do = 0 the flow takes place over a horizontal surface, and 
if Do < 0 the flow takes place over a parabolic ridge. For the first case, Do > 0, we 
assume that the total fluid mass is not only conserved, but is (i) finite (per unit y-length) 
and (ii) equal to the mass in an undisturbed channel with a planar free surface at z = 0 
(the equilibrium free surface in a non-rotating channel). For Do = 0 and Do < 0 we are 
mostly concerned with cases where the total fluid mass is finite (per unit y-length), for 
example, where a parabolic ridge of fluid is situated on top of a parabolic ridge of 
lesser convex curvature. 

In view of (9, the horizontal divergence tlu/tlx+tlv/tly is equal to u,(t), while the 
relative vorticity au/ax - au/ay is equal to v,(t). Thus, the divergence and vorticity 
fields are spatially constant and the advection terms must vanish from their respective 
evolution equations. 

Before considering other dynamical implications of (4) and (5) ,  we note some simple 
geometrical implications. The transformations x’ = x + h,/h,, and hh E h, - h:/(2h,,) 
remove the h, term from the free-surface displacement, resulting in h = h,, i 2 / 2  +hi. 
Thus, the free surface is a parabola of (instantaneous) curvature h,, displaced 
horizontally by a factor of h,.h,, and vertically by a factor of h:/(2hx,). Also note that 
the fluid depth as x + _+ 00 depends on the difference between the free-surface curvature 
h,, and the curvature of the channel 2D,/L2. If h,,-2Do/L2 > 0 the fluid depth is 
positive and unbounded as x + k co. If h,,-2Do/L2 < 0 the fluid depth becomes 
negative for large x and the fluid is confined to a finite part of the x-domain where D + h 
is positive. In this investigation we are concerned primarily with the latter case of finite 
fluid mass (per unit y-length). 

Applying (4) and (5) to (1)-(3) and collecting terms in common powers of x, results 
in a system of seven coupled nonlinear ordinary differential equations in seven 
unknowns : 

(6)  
(7) 

duo/dt + U ,  U ,  -fi, + gh, = 0, 
du,/dt + U: - f i x  + gh,, = 0, 

dv,/dt + u,(v, +f) = 0, 
dv,/dt + u,(u, +f) = 0, 

dh,/dt + u,(D0 + h,) + uo h, = 0, 
dh,/dt + 2u, h, + uo(h,, - 2D,/L2) = 0, 

dh,,/dt + 3u,(hX, - 2D0/L2) = 0. 
In contrast to low-order systems that are truncated expansions (approximations) of 

partial differential equations (e.g. the Lorenz equations), our system of ordinary 
t As noted by Thacker (1981), inclusion of a linear term for D amounts to a shift in coordinates 

(a linear term could be removed from D by a change of variable, leaving the form of h unchanged). 
We have therefore excluded such a term at the outset. 
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differential equations follows from the original partial differential equations ( l t ( 3 )  
without approximation. The fact that our original equation set reduces to a finite set 
of ordinary differential equations verifies that exact solutions of the shallow-water 
equations of the form (4) and ( 5 )  are at least mathematically feasible. Of course, 
whether such flows can be realized in practice depends, in part, on the stability of 
these solutions, an issue that is beyond the scope of the present investigation. 

Equations (7) ,  (9) and (12) comprise a sub-system of three equations in the three 
unknowns u,, u, and h,, and can be solved independently of the other equations. These 
three variables interact with each other and also serve as external forcings in the 
equations for uo, uo, h, and h,. The variables v,, u, and h,, comprise a divergent mode 
while u,, v,, h, and h, comprise a non-divergent mode. Since (10) is the only equation 
involving h,, we can compute h, as a residual once the other variables have been 
obtained. 

3. Steady-state solutions : pure non-divergent mode 
The trivial state of no motion is a solution of (6)-(12). To derive other steady states, 

we set the time derivatives in (6)-(12) to zero. Examination of (12) then shows that 
u, = 0 and/or h,, = 2D,/L2. If u, =t= 0 we find by working upward from (12) to (10) 
that h,, = 2D,/L2, h, = 0,  and D,+h, = 0;  so D+h = 0 for all x. Since there would 
be no fluid in this case, our assumption that u, =+ 0 is not tenable and u, must be zero. 
Equations (6)  and (7)  then yield the geostrophic relations, h, =fv,/g, and h,, =fu,/g, 
while equations (8), (10) and (1 1) reveal that either (i) u, = 0 or (ii) u,+f= 0, h, = 0, 
and h,, = 2D0/L2. In case (i) we obtain 

( 1 3 )  I 

I 

u, = u, = 0, h, =fv,/g, h,, =fv,/g, 
uo, v, and ha are arbitrary constants, 

whereas in case (ii), h, and u, are arbitrary constants and h,, is equal to both - f ' / g  
and 2D,/L2. Thus, the fluid depth is of uniform thickness, D+h = D,+h,, and 
Do = - L2f  ' / (2g) .  Iff= 0 (Do = 0)  the free surface is horizontal and we obtain uniform 
flow on a non-rotating horizontal plane: 

(14) 
h,, u, and u,, are arbitrary constants, 
h = h  = U  = u  = O ,  x x x x x  

whereas if.f =i= 0 (so Do = -L2f2/(2g)  < O), the flow takes place over a ridge, 

1 h, and u, are arbitrary constants, 

Now suppose that only the divergent mode variables v,, u, and h,, are in a steady 
state. It can be shown that u, = 0 (as in the previous case), v, = c, a constant, 
h,, =fv,/g, and 

du,/dt -fi, +gh, = 0, 
dv,/dt + U,(C  + f )  = 0, 

(16) 
(17) 

dh,/dt + U, h, = 0.  (19) 
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Differentiating (16) and making use of (17) and (18) results in d2u,/dt2+Bu0 = 0, 
where B E f '+2gD0/L2.  After solving for u,, integrate (17), (18) and (19) in turn to 
obtain u,, h, and h,. The form of the solutions depends on the sign of B. If B = 0, a 
parabolic blob or infinite wedge of fluid accelerates over a horizontal plane (0, = 0, 
f =  0) or over a ridge (Do  = - L2f2 / (2g )  < 0), 

(20 a-d) u, = 0, u, = c, uo = a + bt, uo = - (c +f )  (at + ibt') + d, 

f b-fd h - - (c +f) t2(a + +bt)2 + - (at + ibbt') + e ,  
O - 2g g 

where a, b, c, d and e are integration constants. If B > 0 (Do  > - L2f2/(2g))  we obtain 
inertia-gravity waves in a channel (Do > 0), on a flat plane (Do = 0) or over a ridge 
(0, < 01, 

u, = 0, v, = c, u, = acos(B1/2t-b), v0 = -~ a(c sin (B112 t - b) + d, Bl/2 
(2 1 a-d) 

c o ~ [ 2 ( B " ' t - b ) ] - ~ s i n ( B ' ~ ~ 1 - b ) + e .  gB'12 

The non-divergent components of the velocity field oscillate with a period of 2 7 ~ / B ~ / ~ .  
The free-surface oscillation is composed of two periods : 2n/B112 and n/Bli2, the latter 
periodicity arising from nonlinear terms. This flow is equivalent to Thacker's (1981) 
equation (33) if there is no wind shear (c = 0) and no mean pressure gradient (d = 0). 

If B < 0 (Do < - L2f2 / (2g )  < 0) ,  the solution is 

u, = 0, 0, = C ,  h,, = fu,/g, 
u, = a exp (( - B))"' t )  + b exp (- (- B)ll2 t) ,  

(22 a-c) 

u, = -~ c+f (aexp (( -PI2)  t ) -  bexp (-( - B1/2) t ) )  +d, (22 d, e> (- 

[aexp (( - B)'/' t ) -  bexp (-( - B)l/' t)] +-, fd ( 2 2 f )  
g 

h =-- fc --O 20 [ a' exp (2( - B)l/' t )  + b2 exp (- 2( - B)l12t)] ' 2 B ( g  L ' )  

- fd [aexp (( - B)"' t ) -  bexp (-( - B)lI2 t)] +e. g( - B)l12 

With attention restricted tofu, < 0 (and e large enough to ensure that the fluid depth is 
positive on part of the domain), the fluid mass is finite and the free surface is a para- 
bola. If b/a < 0 the parabolic blob of fluid ascends part of the way up the parabolic 
ridge and then accelerates back down the ridge, the way it came, whereas if b/a > 0 the 
blob of fluid rises over the crest of the ridge and then accelerates down the other side. 
In either case, the curvature of the free surface remains constant while h, and h, 
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become unbounded as t --f cc . Presumably, these unbounded solutions might become 
bounded if friction is included in the governing equations. If the initial values of uo, vo 
and h, are such that (- B)112 u,, + fv, -gh, = 0 then a = 0 and a steady state is reached 
as t-+ cc, (if d = 0 the blob reaches an equilibrium position at the top of the ridge). 
However, any slight violation of this condition results in a =k 0, so the equilibrium 
solutions are unstable. 

In summary, oscillatory solutions for the pure non-divergent mode are found for 
parabolic channels of any aspect ratio and for parabolic ridges with sufficiently gentle 
slopes. The period of the velocity field oscillation is 21c/Bl/~. The periods of the free- 
surface oscillations are 27c/B1I2 and 7cIB"'. If Do < -L2f2/(2g)(B < 0), the ridge is too 
steep to support waves and solutions become unbounded. 

4. Integrals of motion 
In the previous section we examined the solutions for which u,, v, and h,, were 

stationary and found that u, was necessarily zero. In this section we obtain integrals 
of (6)-(12) for the general case where u, is not identically zero. We first consider the 
sub-system (7), (9) and (12) describing the divergent mode. 

4.1. Divergent mode 
Since (7) is, formally, a Riccati equation for u,, we introduce a transformation designed 
to remove the quadratic nonlinearity from the Riccati equation (Davis 1962) in the 
hope that it will simplify the problem 

Applying (23) in (9) and integrating results in 
t i ,  +f  = a/$, (24) 

where a is an integration constant. Similarly, applying (23) to (12) and integrating 
results in h,,-2Dn/L2 = c/$3, 
where c is an integration constant. Since we are restricting attention to cases where 
h,,-2Do/L2 < 0 (see §2), c = 0 is excluded from consideration. 

To obtain a single equation in $, apply (23)-(25) to (7) to get 

d24/dt2+B$+--af gc = 0, B = f 2+2gDo/L2 
$ 

In Appendix A we show how Thacker's (57) and (58) can be reduced to this equation. 
Multiplying (26) by d$/dt and integrating yields 

2gc 
4 (d$/dt)' + B$' - __- 2af$ = e, 

where e is another integration constant. The qualitative behaviour of $ and its exact 
solution in terms of elliptic integrals is examined in the next section. For now, we 
regard $ as known, and proceed to the integration of the remaining equations. 

4.2. Non-divergen t JEo w 
Applying (23) and (25) to (1 l), leads to an expression for un in terms of h, and $: 

d 
C U ~  = -$-($'h5). 

dt 
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Applying (23) and (28) to (10) and rearranging leads to (d/dt) [94h2 - 2c9(D0 + h,)] = 0, 
or 

Applying (24) and (28) to (8) and rearranging leads to (d/dt) [cv, - ~ q 5 ~ h , ]  = 0, or 

94h: - 2c9(D0 + h,) = b. (29) 

CV, = ac$2h,+d. (30) 
Here b and d are integration constants. Equations (28t(30) express u,, v, and h, in 
terms of 9 and h, (since c $; 0). Applying (23), (28) and (30) to (6) results in a linear 
equation for h,, 

Equation (31) is freed of a first-derivative term by defining H = 9'hX, so that 

Fortuitously, the coefficient of H i s  equal to B (see (26)), and (32) reduces to 

d2H/dt2 + BH+ f d  = 0 .  (33) 
Solving (33), we obtain h, as 

I B = 0,  1 h, = - [ 8 + ~ t - - f d t ' ] ,  
43 
1 h =-[ 9' 

h, =- 9 " e e x p ( ( - B ) 1 ~ 2 t ) + 6 e x p ( - ( - B ) 1 ~ 2 f ) - ~ ,  B < 0, I 
where E and 6 are constants. These solutions correspond to the non-divergent solutions 
of the previous section, (20)-(22), modulated by the divergent mode (the factor of 9'). 

4.3. Shoreline 
The shoreline is defined by the points x = r for which D(r)+ h(r, 2) = 0,  or, in view 
of (41, 

Solving (35) for r yields 

Do( 1 - r2/L2) + h, + h, r ++h,, r2 = 0 .  (3 5)  

(36) 

from which one can infer that the shoreline extends further up the sides of the channel 
as the free-surface curvature becomes more concave (or less convex). 

Making use of (25) and (29), we rewrite (36) as 

where r,  and r- denote the positions of the eastern and western shorelines, respectively. 
The 93h, terms in this expression are known explicitly from (34). 
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5. Solution of the +equation 

@ = $ /a ,  A = -2af/(alBI) and E E e/(az IBI), obtaining 
We non-dimensionalize (27) by introducing 7 = )B1'12 t (for B =k 0), a3 = -2gc/lB1, 

(d@/dT)'f@'+ l /@+A@ = E, (38) 
where the upper sign is taken if B > 0 and the lower sign is taken if B < 0. 

In view of (25) and the parameters introduced above we can write 

@ = - [  2g (h,, - 2D0/L2) (39) 

For the main case of interest, h,,-2Do/L2 < 0 (see $2),  and cib is positive. 
In view of (24), (25) and the parameters introduced above, we can express A as 

With h,,-2D,/L2 < 0, A is positive iff(v,+f) < 0 and negative iff(v,+f) > 0. 
To solve our problem with specified initial values of h,,(O), u,(O) and u,(O), we 

compute A from (40), @(O) from (39) and (d@/d7)(0) from (23), that is (d@/d7) 
(0) = @(O) u,(O) lBl-'lz. We then obtain E as a residual from (38) and solve (38) with 
the initial value @(O). 

The qualitative behaviour of @ can be deduced by analogy to one-dimensional 
particle motion in a potential field, that is by regarding @ as a particle displacement 
and (38) as an energy equation for a conservative system (Goldstein 1980). In $5.1 we 
describe the qualitative behaviour of the solution under the restriction that B > 0. The 
corresponding exact solution is presented in Q 5.2. Exact solutions for B < 0 and B = 0 
are presented in $55.3 and 5.4. 

5.1. Qualitative behaviour of the solution for B > 0 
If B > 0 then (38) can be written as 

(d@/d7)'+ V(@) = E, V(@) E cib2+ l/cib+A@, (41) 
where we regard (d~$/d7)~ as the kinetic energy and V(@) as a nonlinear potential 
energy function. Since (d@/d7)' is non-negative, V(@) must be less than or equal to E 
on any domain of physical interest. The behaviour of the solution depends on the 
nature of V(@), especially on the points @* where V(@*) = E. Since d@/dr = 0 on 
these points, @* are local extrema of @(t).  As long as @* =+ 0, these points are 
equivalent to the roots of @*[V(@*)-El = 0, that is the roots of the cubic equation 
@*3 + A@*'- E@* + 1 = 0. These roots are derived in Appendix B. 

Since dV/d@ = 2@- l /@z++,  there are local extrema in V(@) where 
@3+&4@'-$ = 0. Analysis of this cubic equation following the general procedure in 
Appendix B reveals that there are one, two or three extrema depending on whether A 
is less than, equal to, or greater than 3. 

V(@) is split into two curves by the singularity at @ = 0. On the curve for @ > 0, the 
curvature is always positive, limo+m V(@) = co and lim@+" V(@) = co. Thus, there is 
only one extremum for @ > 0 and it is a minimum. On the curve for cib < 0, V has 
positive curvature for @ < - 1, negative curvature for @E (- 1, 0), and an inflection 
point at @ = - 1. Moreover, limo+o V(@) = - 00 and limo+-m V(@) = co . If A < 3 
there are no local extrema for @ < 0 since there is only one local extremum on the 
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Y A 

@ 

FIGURE 2. Representative curves of the potential energy function V(@) = @’+ l / @ + A @  for B > 0. 
(a) A = - 5 ,  (b)  A = 10. Points R and Q in (a) mark the turning points of the solution for E = 20. 
Points W and X in (b)  mark the turning points of the solution for E = -20. 

whole domain @E(- 00,00) and it is associated with the curve for @ > 0. If A > 3 
there are two local extrema for @ < 0 : a local minimum for @ E (- 00, - I), and a local 
maximum for @ E (- 1,O). V(@) curves representative of the regimes where A is less 
than 3 (one local extremum) and greater than 3 (three local extrema) are depicted in 
figure 2. 

To illustrate the qualitative behaviour of @, let the initial values h,,(O), v,(O) and 
u,(O) be such that A = - 5 ,  E = 20 and @(O) = 6 (point P on figure 2a). The subsequent 
motion must satisfy (41), which we write as 

d@/d7 = +_ [E- V(@)]”’. (42) 

If we choose the positive branch of (42) the motion proceeds along the V(@) curve in 
the direction of increasing @ until a point where V(@) = E is reached (point Q). 
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Although d@/d7 = 0 at Q, the solution will, in general, not be in a steady state because 
d2@/d7’ is not necessarily zero (d2@/d7’ vanishes only where d V/d@ vanishes). 
Moreover, the solution cannot proceed further in the direction of increasing @ because 
E -  V(@) would then be negative. Therefore, we must now choose the negative branch 
of (42), and proceed along the V(@) curve in the direction of decreasing @ until the next 
root of V(@)- E = 0 is reached (point R). d@/d7 changes sign at this point and @ 
subsequently increases. This process continues ad injinitum and we infer an oscillatory 
motion between points Q and R. This oscillatory motion would have been identical, 
apart from a phase shift, if we have started at any point between Q and R with either 
the negative or positive branch of (42). 

Now suppose that A = 10, E = -20 and the initial value @(O) is negative (the fluid 
depth becomes infinite as x i +  03). This initial state is point S in figure 2(b). If the 
motion starts along the positive branch of (42) it continues along the positive branch 
for all time since it never reaches a turning point. As t -+ co, @ + 0 and the potential and 
kinetic energies become unbounded. If the motion starts at S along the negative branch 
of (42), a turning point is eventually reached (point T) and the solution thereafter 
proceeds along the positive branch. Again, the potential and kinetic energies become 
unbounded. If the motion starts at any point between the two turning points W and 
X, an oscillatory motion would result. 

5.2. Exact solution for B > 0 
Separating variables in (42) and integrating, we obtain 

Restricting attention to the oscillatory motion associated with @ > 0, the denominator 
of (43) has three real roots, @:, @: and 0:; two positive and one negative. Here we 
order these roots (and rename them) as Q1, G2 and Q3 where Q3 > cPZ > 0 > Q1, The 
motion is such that @ oscillates between the two positive roots G2 and Q3. It is 
convenient to start the motion at @(O) = Q2 (so u,(O) = 0, and v,(O) and h,,(O) are local 
extrema). The solution must then proceed along the positive branch of (43) and satisfy 

where Q3 3 @ > Q2 > 0 > The solution reaches the turning point @ = Q3 at 
7 = 7(Q2, Q3) and then proceeds along the negative branch of (43). Thus, for the second 
half of this oscillation, 

(45) 
The solution completes one period of oscillation T23 (= 27(Q2, G3)) when @ returns 

The integral 7(Q2,@) is evaluated with the aid of Gradshteyn & Ryzhik (1980, 
equation (14) of $3.167). Collecting results, we write the solution over a period q3 of 
this oscillation as 

to 02. 
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as @ travels from @, to @, (0 < 7 < T2,/2), and 

= G3-T(@p2> @)2 

as @ travels from Q3 back to QZ ($G3 < T < G3), where 
(47) 

(48) 

and n(x, 1 - @,/Q3, p) is a Legendre elliptic integral of the third kind (notation as in 
Gradshteyn & Ryzhik). If the motion starts at @(O) = Q3 rather than at cDZ, a simple 
modification of this solution is required (with no change in T2,). 

5.3. Exact solution for  B < 0 
If B < 0, equation (38)  becomes 

1 g)’+ V(@) = E, V(@) 3 - @ , + - + A @ .  46 (49) 

The V(@) curve for B < 0 is identical to the curve for B > 0 with V replaced by - V 
and @ replaced by - @, that is the curve V(@) for B < 0 can be obtained by reflecting 
the curve V(@) for B >  0 about the @- and V-axes. Similarly, the roots @* of 
E-  V(@*) = 0 for B < 0 are equal to the negative of the roots of E-  V(@*) = 0 for 
B > 0 with E replaced by -E. 

For B < 0, the only scenario of oscillatory motion is when all three roots of 
E -  V = 0 are real and positive, and the flow is confined to the basin between the first 
and second roots < Q2 < 46,). As in the 
previous section, we start the motion at a root of E- V = 0, in this case @ ( O )  = Q1, so 
u, is initially zero and v, and h,, are local extrema. Making use of Gradshteyn & 
Ryzhik (1980, integral (4) of $3.167), we write the solution over a period T,, of this 
oscillation as 

and Q2 (with the roots ordered as 0 < 

as @ travels from Q1 to G2 (0 < T < iTJ, and 

= r,, - T(@l, @I, 
as 46 travels from e2 back to Q1 (+T12 < 7 < Tlz), where 

If the motion starts at @(O) = Q2 rather than at Q1, a simple modification of this 
solution is required. 

5.4. Exact solution for B = 0 
If B = 0, we introduce 01 z -2gc, @ = $/a,  7 = t / a  and K = 4afgc, and (27) becomes 

d46/d7 = + [ e -  V(@)]’/’, V(@) = l/@++@. (53) 
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Again, because of the singularity at @ = 0, V(@) is composed of two curves, one for 
@ > 0 and one for @ < 0. Since dV/d@ = - 1/@’+ K and d2V/dQ2 = 2/Q3, we see that 
if K > 0 there is a local minimum Vmin = 2 ~ ~ / ~  at @ = K - ~ / ’  and a local maximum 
V,,, = - 2 ~ ” ’  at @ = - K - ~ / ‘ .  If K < 0 then dV/d@ < 0 everywhere. If K = 0 then 
dV/d@ < 0 but approaches 0 as @ + k 00. Thus, if K > 0 and @ > 0 there is an 
oscillation in the V(@) basin provided that e > Vmin. If K = 0 and @ > 0 then @+ co 
as t --f 00 (so d@/d7 + el/’ and u, + 0 as t --f co) either directly or after going through a 
turning point at @ = l / e .  If K < 0 the kinetic energy becomes unbounded on either 
curve. 

First consider the oscillatory motion associated with K > 0. The two turning points 
are given by 

The condition for oscillatory motion, e > Vmin = 2 ~ ~ ’ ~ ,  guarantees that these turning 
points are real and positive. We start the motion at 7 = 0 at @, and proceed in the 
direction of increasing @ (the positive branch of (53)). Thus, for the first half of this 
oscillation we have 

where < @’. The solution reaches the second turning point when 7 = 7(G1, @,). For 
the second half of the oscillation the solution follows the negative branch of (53) so that 

The solution completes one period of oscillation T,, ( s  27(G1, @ J )  when @ returns 

The integral 7(Q1,@) is evaluated with the aid of Gradshteyn & Ryzhik (1980, 
equation (16) of53.141). Collecting results, we write the solution over one period 7, as 

to @,. 

as @ travels from Q, to @, (0 < 7 ,< iTJ, and 

7 = T,, - 7(QP @I7 

as @ travels from Q2 back to Q1 (iq2 < 7 < ZJ, where 

and E(x, P)  is a Legendre elliptic integral of the second kind. 
Next consider the case where K = 0. Since B (  =fz+2gDo/L2) is also 0, this 

corresponds to either (i) the spreading of a non-rotating parabolic ridge of fluid over 
a flat plane or (ii) the spreading of a rotating parabolic ridge of fluid over a parabolic 
ridge with Do = -f2L2/(2g). The spreading of a rotating parabolic ridge of fluid over 
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a flat plane is contained in the B > 0 flows described in 595.1 and 5.2. The related case 
of axisymmetric spreading of a paraboloid of revolution was considered by Ball (1964) 
and Thacker (1981). 

If the motion starts at the unique turning point @ = l/e( > 0), the solution satisfies 

Evaluation of the integral is facilitated by changing variables to x = [e@'/(e@'- 1)]1/2. 
One obtains 

6. Recapitulation: the initial value problem 
The solutions of the @-equation described in $5 were constructed so that the initial 

values @(O) were associated with a zero in d@/d7 (i.e. u,(O) = 0, and u,(O) and h,,(O) 
are local extrema); this choice simplified the form of the solutions without limiting 
their generality (apart from the removal of a phase shift). The form of these solutions 
depended on the sign of B. We now summarize the solution for all variables for B > 0 
and indicate how the constants of integration can be related to the initial conditions 
and the governing parameters. The channel geometry and Coriolis parameter are 
assumed specified at the outset. 

Specified initial values of the free-surface curvature h,,(O) and relative vorticity v,(O) 
allow us to compute A from (40) and @(O) from (39). Thus, with A and @ ( O )  known 
and d@/d7(0) = 0, we compute E as a residual from (38). The three roots Q1 < @, < G3 
are obtained by ordering the roots in (B 5) .  If h,,(0)-2D,/L2 < 0 then 
cD1 < 0 < cD2 < Q3 and cD(0) is equal to one of the positive roots, cD2 or cD3. If 
@(O) = G2, the solution for @ (an oscillation between G2 and G3) follows from 
(46)-(48). If @(O) = Q3 then @ follows from a simple modification of (46k(48). The 
solution for d@/d7 in terms of @ follows from (42). We obtain uz, v, and h,, from (23), 
(24) and (25) rewritten as 

a" - a AlBl v,+f=- where a = - = - -  
@' a 2f ' 

and h,, vo and u, follow from (34), (30) and (28) as 



Nonlinear shallow- water oscillations in a parabolic channel 63 

The constants 2,S and E are related to the initial values h,(O), v,(O) and u,(O) by 

2 = Fv,(O) - r2O2(0) h,(O), (68) 

- ?U,(O) c = -  COSS * 0, 1 BI li2 cos S ' 

We obtain h, from (29) rewritten as 

The parameter b (or 6) affects the fluid depth at the centreline D,+h, and the 
shoreline positions Y, and r-, but does not affect u,, v,, h,, v,, h,, or u,. If D, > 0 we 
choose b such that the total fluid mass (per unit y-length) in the channel is equal to the 
mass in an undisturbed channel with a planar free-surface at z = 0, that is 

Using (4), (29), (37) and the condition h,,-2D,/L2 < 0 to evaluate (72), we obtain 
b as 

(73) 
If the flow takes place over a ridge (Do < 0) or over a flat plane (Do = 0) it may be more 
appropriate to specify an arbitrary initial centreline depth and compute b from (71) as 
a residual. 

b = ( ~ D , L c ~ ) ~ ' ~ ,  6 = b/u4 = (2D,Lc"2)213 = (DoLB2/2g2)z'3. 

The shoreline functions are obtained from (37) rewritten as 

r- = 
z .  f i  - 

Y, = -;sin(~-S)+-+b"~ 
C B? 

7. Trajectories 
The class of flows considered herein are noteworthy in that flow trajectories can be 

obtained analytically. The trajectories are solutions of (5) with x ( t )  and y(t) regarded 
as the instantaneous position coordinates of a fluid parcel. Since u = dx/dt and 
v = dy/dt, (5) becomes 

dx/dt = u,(t) + u,(t) x( t ) ,  dy/dt = u,(t) +u, (t)x(t). (75) 
We solve these equations for the case where B > 0 and h,, - 2D,/L2 < 0. Ironically, the 
evaluation of the y-component of the trajectory for these ' one-dimensional' flows 
offers the most difficulty. 

7.1. x-component of the trajectory 
Making use of (23), we can integrate the first of (75) as 
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The integral is evaluated with the aid of (28) and (34) and we obtain 

Making use of (24), 

which integrates to 

Iff = 0 then (79) is 

7.2. y-component of the trajectory 
(30), (34) and (77), the y-component trajectory equation becomes 

t - f 1 x(t') dt'. 

our desired formula. I f f +  0, apply (77) in (79) so that 

(79) 

t +{[ Q3(t') h,(t') dt' 

-~ (Zx(0) + @'(O) h,(O)) 
c"@(O) 

The Q3h, integral can be easily evaluated with the aid of (34). The integral over @ is 
more difficult since we only know @ implicitly. In this case we change the integration 
variable from t to @, 

In practice this integral must be partitioned into subintervals such that d@'/d7 vanishes 
at the endpoints of each subinterval. 

In the case where B > 0 and h,.-2D,/L2 < 0, @ oscillates between the two turning 
points G2 and G3 with a (non-dimensional) period q3 (see tj5.2). We start the motion 
at @(O) = Q2 and proceed along the positive branch of (42) until Q3 is reached. For the 
second half of the oscillation the motion proceeds along the negative branch of (42). 
Thus, for 0 < r d iq3 (the first half of the oscillation), the integral can be written as 

and for &,/2 < T < q3 (the second half of the oscillation), the integral becomes 

I = 2I(@', G3) -I(Q2, @). (83) 
The integral I (@2,@)  is evaluated in Appendix C. Collecting results, we write the 
solution as 

where I(@2, @) is given by (C 8). The extension of this solution for non-dimensional 
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times greater than q3 and for a motion that starts at @(O) = O3 rather than at Q2 is 
straightforward. 

7.3. z-component of the trajectory 
For the vertical component of the trajectory we use the familiar result in shallow-water 
theory that the relative height of a fluid element above the lower boundary is conserved 
following the motion of the fluid element (Pedlosky 1979). For a flow satisfying (4) and 
(5) ,  this can be expressed as 

8. Examples 
In order to quantitatively evaluate the solution and trajectories for specific flow 

scenarios, it was necessary to evaluate the Legendre elliptic integrals of the first, second 
and third kind. Toward that end, we computed the Carlson elliptic integrals with the 
IMSL MATH/LIBARARY special functions FORTRAN subroutines ELRF, ELRD and ELRJ. The 
Legendre elliptic integrals were then expressed in terms of the Carlson integrals 
following the relations given in Carlson (1979, p. 8) (see also Press et al. 1992, $6.11). 

We first examine the behaviour of the non-dimensional period of oscillation TZ3 for 
the divergent mode described in $5.2. We will display G3 as a function of two non- 
dimensional parameters : 

g(h,*, - 2D,/L2) - gh,*,/f2 - 2L:/L2 
- 

B 1 +2L;;/L2 Pl = 
and 

Here L, = (gD,)1'2/lfl is the Rossby radius of deformation and uj and hj, are extrema 
in the relative vorticity and free-surface curvature, respectively. A and the extremum 
@(O) are related to p1 and p2 through (39) and (40), i.e. A = 41i3p2,u;1i3 and 
@(O) = - (2 ,~J l '~ .  A contour plot of G3 as a function of p1 and ,u2 is presented in figure 
3. The period of oscillation is seen to increase as ,ul decreases and as pz increases. It can 
be shown that if.f- k 00 (with other parameters held fixed) then p1 --f 0, p2 + 1, @ -+ 00 

and T,,$ -4n($, 0,O) = 2n. In this case the amplitude of the divergent oscillation 
vanishes while the dimensional period of the oscillation, 2n/Bli2, becomes equal to the 
period of the non-divergent mode (see $3). 

We next examine the velocity and free-surface displacement functions for a flow in 
which the free surface is initially a parabolic ridge centred on the channel centreline. 
We consider three scenarios: (i) L > L,, (ii) L - L,, and (iii) L < L,. In all three cases 
the initial conditions are: u,(O) = 1 m s-', ~"(0)  = 3 m s-', u,(O) = 0, u,(O) = 6/L ,  
h,(O) = 0 and h,,(O) = -20D0/L2. The channel depth is D ,  = lo3 m, the (reduced) 
gravity constant is g = 0.01 x 9.8 m s-' and the Coriolis parameter is f =  s-l, 
giving a Rossby radius of deformation of L,  z lo5 m. The channel half-width in case 
(i) is L = lo6 m, in case (ii) is L = lo5 m, and in case (iii) is L = lo4 m. Some derived 
parameter values for these cases are presented in table 1 .Time series for the divergent 
mode functions in cases (i), (ii) and (iii) are shown in figures 4, 6 and 8, respectively, 
for two periods of the divergent oscillation. Time series for the corresponding non- 
divergent flow variables in cases (i), (ii) and (iii) are shown in figures 5, 7 and 9, 
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FIGURE 3. Non-dimensional period of oscillation TZ3 for the divergent mode of $5.2 as a function of 
two non-dimensional parameters, ,ul = g(h&--2D,/L2)/B and ,u2 = f l v f + n / B .  v z  and hzz are local 
extrema in the relative vorticity and free-surface curvature, respectively. The dimensional period of 
oscillation is T,,/B1I2. 

B (ss2) A E P1 PZ T 2 3  

Case (i) 0 . 1 0 1 9 6 ~  lo-' -2.76909 -1.16331 -0.21167 1.03960 5.59924 
Case (ii) 0.29620 x lo-' -0.44230 2.42909 -7.28629 0.54018 3.80541 
Case (iii) 0.19720 x -0.02538 2.91602 - 10.94422 0.03550 3.51437 
TABLE 1. Parameter values for case (i) (L = lo6 m), case (ii) ( L  = lo5 m) and case (iii) (L  = lo4 m) 

respectively, for 24 periods of the divergent oscillation. Figure lO(u-c) depicts the 
trajectory of a fluid parcel initially located at ( x / L ,  y / L )  = (0.12,O) in cases (i), (ii) and 
(iii). Figure 10(d) shows the trajectory of a fluid element initially located at ( x / L ,  
y / L )  = (0.1, 0) for a flow scenario similar to that in case (i) but with the Coriolis 
parameter reduced to f = 2 x 

In case (i) the waveforms of the divergent mode functions resemble slightly distorted 
sinusoids. The crests tend to be slightly flatter than the troughs for the free-surface 
curvature function, whereas for the relative vorticity the troughs tend to be slightly 
flatter than the crests. The free-surface curvature is negative throughout the oscillation, 
indicating that the free surface is always convex (a ridge). Although the relative 
vorticity is initially positive, it rapidly becomes negative in response to the compression 
of the absolute vorticity and attains a large negative extremum value at 7 = ;T3. Since 
the periods of oscillation of the divergent and non-divergent modes are similar 
(TZ3 = 5.59924 and 2n), the non-divergent mode variables appear as amplitude- 
modulated oscillations with a carrier wave period of T3. 

In case (ii) the waveforms of the divergent mode functions become quite distorted 

s-l. 
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FIGURE 4. Time series of the divergent mode functions (a) L’hZZ/D,, (b)  Luz and (c) Lu, for case 
(i) ( L  = lo6 m). Two periods of the divergent oscillation are shown. The time 7 is non-dimensional. 
The non-dimensional period is T,, = 5,59924. The dimensional time is t = 7/B1” where B = 
0 . 1 0 1 9 6 ~  10-7s-2.  

from the sinusoidal form. The free-surface curvature function crests are now much 
flatter than the troughs and the relative vorticity troughs are much flatter than the 
crests. The free-surface curvature decreases rapidly in magnitude, becomes positive, 
and remains slightly positive for over half the period of the oscillation (the fluid 
ridge collapses rapidly and the free surface becomes slightly concave). The period of 
oscillation of the divergent mode is no longer similar to that of the non-divergent mode 
(T2:< = 3.80541 and 2n) and the non-divergent flow variables no longer have a smooth 
modulated appearance. Instead, some of the variables appear ragged or spiky; more 
frequencies are apparent and the waveforms are more complicated. Not surprisingly, 
the shoreline functions and parcel trajectories reveal that the lateral extent of the 
oscillation (as a fraction of L)  is much greater in case (ii) where L,/L - 1 (a moderate- 
rotation regime) than in case (i) where L,/L < 1 (a high-rotation regime). 

The shape and amplitude of the divergent mode functions in the low-rotation 
example, case (iii) (L,/L > 1) are quite similar to the functions in the moderate- 
rotation example, case (ii) (L,/L - l), with the exception of the relative vorticity which 
has an amplitude of about half of what it was in case (ii). The non-dimensional period 
of oscillation of the divergent mode is just slightly smaller in case (iii) (Tz3 = 3.51437) 
than in case (ii) (T,, = 3.80541). On the other hand, since B is two order of magnitudes 
larger in case (iii) than in case (ii), the dimensional period (T,,/B1”) in case (iii) is an 
order of magnitude smaller than in case (ii). The waveforms of the non-divergent 
velocity components in case (iii) are still ragged, but their amplitudes are greatly 
reduced from those in case (ii). The time average of D,, for case ( 5 )  (approximately 
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FIGURE 5. Time series of (a) uo, (b) uo, (c)  ho/Do, ( d )  Lh,/Do and (e)  the shoreline functions r+/L and 
r J L  for case (i) ( L  = lo6 m) for 24 periods of the divergent oscillation. The time T is non-dimensional. 
The dimensional time is t = T/P where B = 0.101 96 x lo-? ss2. 

2.9 m s-l) is the largest of the three cases. Because of the relatively large positive mean 
value of v,, and lack of negative relative vorticity v,, the y-component of the sample 
trajectory in this case is characterized by northward motion. In cases (i) and (ii), the 
small mean value of vo and the presence of negative relative vorticity (which contributes 
a negative amount xu, to the total o field for x > 0) is associated with southward and 
northward parcel displacements and loops in the trajectories. We also note that in case 
(iii) the slope of the free surface at the centreline, h,, contains both positive and 
negative spikes (in contrast to the dominant positive spikes in cases (i) and (ii)). These 
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FIGURE 6. As figure 4 but for case (ii) ( L  = 10' m); TZ3 = 3.80541, B = 0.29620 x lo-' ss2. 

spikes are associated with maxima in the centreline free-surface height h,, maxima in 
(convex) free-surface curvature and minima in the distance between the shorelines. 
Thus, the bulk of the fluid ridge at the time of peak curvature can be to the right or 
the left of the centreline in case (iii) whereas in cases (i) and (ii) it is primarily to the 
right of the centreline. 

9. Summary 
A new exact analytic solution is presented for a class of finite-amplitude inviscid 

shallow-water oscillations in an infinite straight channel of parabolic depth variation 
on the rotating Earth. It provides a description of the one-dimensional subclass of flows 
considered by Ball (1964), Thacker (1981), Cushman-Roisin (1987) and others in which 
the velocity field varies linearly and the free-surface displacement varies quadratically 
with the spatial coordinates. The solution is composed of divergent and non-divergent 
modes. In contrast to the previously derived analytic solutions for flows in elliptic 
paraboloidal basins, the frequency of the divergent mode for the parabolic channel 
depends, in part, on the amplitudes of the relative vorticity and free-surface curvature. 
The flow dependence of this oscillation is an intrinsically nonlinear feature. 

Examples were considered of flow in high-, moderate- and low-rotation regimes : 
L > L,, L - L, and L < L,, respectively. In the high-rotation regime the period of the 
divergent mode approached that of the non-divergent mode. The waveforms of the 
non-divergent variables were amplitude modulations of the divergent mode. In the 
moderate-rotation regime the period of the divergent mode was slightly more than half 
that of the non-divergent mode. More frequencies were apparent in the waveforms of 
the non-divergent flow variables and the flow appeared to be quite complex. The non- 
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dimensional frequency of the divergent mode in the low-rotation regime was similar to 
(slightly less than) the frequency in the moderate-rotation regime. As in the moderate- 
rotation regime, the waveforms of the non-divergent flow variables in the low-rotation 
regime were also quite complex, though the amplitudes of the oscillations of the 
velocity functions were of a much smaller amplitude. The behaviour of the sample 
trajectories (a transition from the closed loops of the high-rotation regime to a 
northward motion with superimposed lateral oscillations in the low-rotation regime) 
could be easily interpreted in terms of the behaviour of the velocity functions. Other 
trajectories (not shown) revealed local and occasionally dramatic sensitivities to the 
initial location of fluid parcels. It is intriguing that despite the chaotic appearance of 
some of the variables and trajectories, the analytic flow description involves relatively 
well-known functions and is exact for all parameter values. 

This solution provides a good example of an exact description of nonlinear but non- 
chaotic behaviour in a simple geophysical system. In addition to representing a 
fundamental hydrodynamic flow, it can be used as a benchmark test for the validation 
of numerical shallow-water models and for the determination of optimal computational 
algorithms for systems of nonlinear partial differential equations. 

Ed Adlerman and Lucian0 Fleischfresser at the University of Oklahoma School of 
Meteorology provided helpful comments on the manuscript and computed numerical 
solutions to check against the analytic results. Their assistance is greatly appreciated. 
The figures were prepared with ZXPLOT graphics software developed by Ming Xue 
at the Center for Analysis and Prediction of Storms. This research was supported by 
the Center for Analysis and Prediction of Storms through the National Science 
Foundation/Federal Aviation Administration under grant ATM9120009. 
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FIGURE 9. As figure 5 but for case (iii) (L  = lo4 m); B = 0.19720 x s-' 



Nonlineur shallow-water oscillations in a parabolic channel 73 

XIL 

4.0 

3.2 

2.4 - 
L 

1.6 

0.8 

0 0.4 ( 

XIL 

20 

16 

12 
- Y 
L 

8 

4 

0 

-0.4 

-0.8 

-1.2 v 
L 

-1.6 

-2.0 

-2.4 

-2.8 
0.4 0.8 0 0.2 0.4 0.6 
X l L  X l L  

FIGURE 10. Trajectory of a fluid element initially located at ( x / L , y / L )  = (0.12, 0) in (a) case (i) 
( L  = lo6 m), (b)  case (ii) ( L  = lo5 m) and ( c )  case (iii) ( L  = lo4 m). The trajectories are calculated for 
24 periods of the divergent oscillation. The net parcel displacement is southward (negative y )  in (a) 
and northward (positive y )  in (b) and (c). (d) Trajectory of a fluid element initially located at ( x / L ,  
y / L )  = (0.1, 0) for a flow scenario similar to that in case (i) but with a reduced Coriolis parameter, 
f = 2 x s-l. The trajectory is calculated for 24 periods of the divergent oscillation. The net parcel 
displacement is southward (negative y ) .  

Appendix A. Analytic solution of Thacker’s (1981) equations (57) and (58) 
Thacker’s (1981) development of the one-dimensional channel problem led to his 

equation (57) : 

~+5u*---+3ujl-2fU,v,+ 
d2U, du, 
d t  dt 

and to (58) (our (9)), which he solved numerically. To solve the system analytically, we 
use (23) and the first integral (24) to eliminate u, and u, in favour of q5: 

(A 2 )  
1 d3$ 2 dq5d2q5 3Bd$ 2ufdq5 2gDo --+---+ = O  B E  F+f z. $ d t 3  q52 d t  dt2 $ dt q52 d t  ’ 

Multiplying by the integrating factor 5d3 and integrating by parts yields 

(A 3) d2$ 
$2 + Bq53 - af$2 = const. 

dt  

Dividing by and setting const = -gc yields (26) which is twice integrable. 
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Appendix B. Roots of V(@) - E = 0 
If @* =+ 0, the roots of V(@*)- E = 0 (9Q5.1 and 5.2) are equivalent to the roots 

of @*[V(@*)-E]= 0, that is, the roots of the cubic equation 
@*3 + a2 @*' +al  @* +ao = 0, where a2 = A, a, = - E, and a, = 1. The three (possibly 
complex) roots are given by 

(B 1) 

3 1  9 2  and r =  where s, = [ ~ + ( q ~ + r ~ ) l / ~ ] ~ / ~ ,  s2 = [ ~ - ( q ~ + r ~ ) ~ / ~ ] ~ / ~ ,  q = Lu -la2 
+(al a2 - 3a0) -&a: (Abramowitz & Stegun 1964). If q3 + r2 > 0 there is one real root 
and a pair of complex-conjugate roots; if q3 + r2 = 0 all roots are real and at least two 
are equal, and if q3+r2  < 0 all roots are real. It is straightforward to show that the 
product of the three roots is equal to -a,( = - 1). 

I s1 + s2 -fa2,  
-f(sl+s2)-~u2+32/3(sl-s2), 
- %(s, + s2) - +a2 - fi 2 / 3  (sl - s2), 1 

In the present case, q = -;(A2 + 3E),  Y = -$(EA + 3) -&,A3, and 
q3+? = &27+ 18EA-E2A2+4(A3-E3)). 

@: = ( r  + ( 4 3  + ~2)1/2)1 /3  + (r - ( 4 3  + r2)1/2)1/3 -1, 3 2' 

(B 2)  
Restricting attention to the real roots, we have, for q3+r2  > 0, one real root @: 
given by 

(B 3 )  
For q3 + r2 = 0, there are two real roots @: and @)2* given by 

(B 4) 
For q3 + r2 < 0, there are three real roots @:, @: and @: given by 

= 2r113-1a @* = -r1/3-La 
3 2' 2 3 2' 

(B 5 )  

@T = 2(r2 + 1q3 + r2()1/6 cos ($5') - :a2, 
@: = - 2(r2 + 1q3 + r21)ll6 cos i(0 - 7c) -+a2, 

where 

Appendix C. Evaluation of I(@2, @) 
The integral I(@2, @) appearing in the trajectory calculation of $7.2 is defined by 

@3/2 

d@, (C 1) 
1 

I (@23  @) = B'jZ 
QZ [(@' - Q1) (@' - @,) (Q3 - @')I112 

where Q3 2 @ > G2 > 0 > @,. Changing variables to h = l /@ and making use of the 
fact that the product of the three roots @,, G2 and G3 is equal to - 1 (see Appendix 
B), we obtain 

where > h 2 1/Q3 > 0 > 1/Gl. I (@2,@)  can be reduced to combinations of 
tabulated integrals by using a reduction formula for elliptic integrals (Abramowitz & 
Stegun 1964, equation (17.1.5)), 

~ ( A - C ) - ~  = (2-s)b0 J S - , + ~ ( 3 - 2 s ) b l  J , - ,+ (1 - s )b2JS- ,+ f (1 -2~)b3  JS-sb,  Js+l,  
(C 3) 
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where 

J ,  = [y(h-~)']~'dh, (C 4) 

(C 5 )  
s 

y2 = b , ( h - ~ ) ~ + b , ( h - ~ ) ~ f b , ( h - ~ ) ~ + b ~ ( h - ~ ) + b , ,  

and s is any positive integer. Taking c = 0, s = 1, b, = 0, b, = - 1, 6 ,  = E, b, = - A ,  
and b, = - 1, we get 

I(@2, @) is proportional to J2 (with appropriate limits of integration) and we find that 

hB"'2 (C 7) 

where 
equation ( 5 )  of $3.132 and equation (6) of $3.137),? (C 7) becomes 

> A 3 1/Q3 > 0 > l/@'. Making use of Gradshteyn & Ryzhik (1980, 

where 

and F(A, P), E(A, P) and n ( A ,  1 - Q2/Q3, P) are Legendre elliptic integrals of the first, 
second and third kinds, respectively. 
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